On fractal distribution function estimation and applications
نویسندگان
چکیده
In this paper we review some recent results concerning the approximations of distribution functions and measures on [0, 1] based on iterated function systems. The two different approaches available in the literature are considered and their relation are investigated in the statistical perspective. In the second part of the paper we propose a new class of estimators for the distribution function and the related characteristic and density functions. Glivenko-Cantelli, LIL properties and local asymptotic minimax efficiency are established for some of the proposed estimators. Via Monte Carlo analysis we show that, for small sample sizes, the proposed estimator can be as efficient or even better than the empirical distribution function and the kernel density estimator respectively. This paper is to be considered as a first attempt in the construction of new class of estimators based on fractal objects. Pontential applications to survival analysis with random censoring are proposed at the end of the paper.
منابع مشابه
The effect of estimation methods on fractal modeling for anomalies’ detection in the Irankuh area, Central Iran
This study aims to recognize effect of Ordinary Kriging (OK) and Inverse Distance Weighted (IDW) estimation methods for separation of geochemical anomalies based on soil samples using Concentration-Area (C-A) fractal model in Irankuh area, central Iran. Variograms and anisotropic ellipsoid were generated for the Pb and Zn distribution. Thresholds values from the C-A log-log plots based on the e...
متن کاملShrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata
Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...
متن کاملEstimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation
Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...
متن کاملExp-Kumaraswamy Distributions: Some Properties and Applications
In this paper, we propose and study exp-kumaraswamy distribution. Some of its properties are derived, including the density function, hazard rate function, quantile function, moments, skewness and kurtosis. Adata set isused to illustrate an application of the proposed distribution. Also, we obtain a new distribution by transformation onexp-kumaraswamy distribution. New distribution is an...
متن کاملA Perturbed Half-normal Distribution and Its Applications
In this paper, a new generalization of the half-normal distribution which is called the perturbed half-normal distribution is introduced. The new distribution belongs to a family of distributions which includes the half-normal distribution along with an extra parameter to regulate skewness. The probability density function (pdf) is derived and some various properties of the new distribution are...
متن کاملSome statistical inferences on the upper record of Lomax distribution
In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002